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Abstract
We present a theoretical study on the density of states (DoS) of a two-
dimensional electron gas subjected simultaneously to an intense laser field
and a strong perpendicular magnetic field. We find that in the Faraday
geometry, due to the coupling of the magnetic field to the laser field, the
DoS of a Landau level (LL) is split into a series of peaks centred at E =
EN + (eF0)

2/[4m∗(ω2 − ω2
c )] + mh̄ω. Here, ω and F0 are respectively the

frequency and the electric field strength of the laser field, ωc is the cyclotron
frequency, EN is the N th LL energy, and m = 0,±1,±2, . . . corresponding to
different optical processes. This is electrically analogous to the Franz–Keldysh
effect for an electron gas driven by a strong external field and we therefore
name it the magneto-optical Franz–Keldysh effect.

1. Introduction

It is well known that when a two-dimensional electron gas (2DEG) is subjected to strong
perpendicular magnetic fields in the absence of intense electromagnetic (EM) radiation, due
to Landau quantization, the density of states (DoS) of the 2DEG is a series of peaks centred
at each Landau level (LL) with energy E = EN = (N + 1/2)h̄ωc, where N = 0, 1, 2, . . . ,
ωc = eB/m∗ is the cyclotron frequency, and m∗ is the effective electron mass. This results in
important observations [1] such as Shubnikov–de Haas oscillations and quantum Hall effects.
With the development and application of state-of-the-art intense laser technologies such as
that of free-electron lasers (FELs), it has now become possible to investigate the interactions
between electrons and intense laser fields in 2DEG systems in the presence of quantizing
magnetic fields. This has opened up a new field of research in magneto-optics and magneto-
transport. The FELs are generated by passing an intense beam of relativistic electrons through
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periodic magnetic fields and the current generation of the FELs can provide a high-power,
frequency-tunable, and linearly polarized laser radiation source of terahertz3 (1012 Hz or THz)
bandwidth [2]4. Recently, experimental work has been conducted to study magneto-optical
and magneto-transport properties in GaAs-based 2DEGs in quantizing magnetic fields and
THz FEL fields [3, 4]. Unusual and important THz radiation phenomena, such as the photon-
enhanced high-temperature cyclotron resonance (CR) effect [3], photon-modified Shubnikov–
de Haas oscillation, and quantum Hall effects [4], have been observed using magneto-transport
measurements. These new experimental findings suggest strongly that the field of electron
interactions with intense THz laser radiation in high magnetic fields is very rich in terms of
physics and in device applications.

Like in other studies, in the investigation of magneto-optical and magneto-transport
properties of a 2DEG in strong magnetic fields and intense laser fields, the electron DoS
is one of the central quantities required to determine and to understand almost all physically
measurable properties. In the Voigt geometry where the laser field does not couple directly to
the magnetic field, the DoS of a 3DEG was studied theoretically by Xu, and important radiation
effects, such as the dynamical Franz–Keldysh effect (DFKE), were observed [5]. At present,
little is known theoretically about how an intense laser radiation affects the DoS of the LLs in a
2DEG in the Faraday geometry where the laser field couples directly to the magnetic field. In
view of the fact that currently most experimental measurements on 2DEGs in FEL fields and
high magnetic fields are carried out in the Faraday geometry [3,4], it is of value to examine the
influence of the intense laser radiation on the DoS of the 2DEG in this unique configuration.
In this paper, we present a detailed theoretical study of how electrons in a 2DEG respond to
linearly polarized intense THz laser fields in the presence of strong static magnetic fields in the
Faraday geometry. In section 2, on the basis of a time-dependent condensed matter theory, we
consider a simple theoretical treatment to calculate the steady-state DoS of a 2DEG in coupled
magnetic and EM fields. The main theoretical results are presented and discussed in section 3,
and the conclusions drawn from this study are summarized in section 4.

2. Theoretical approaches

2.1. Solution of the Schrödinger equation

In this paper, we employ a non-perturbative approach to obtain the DoS of a 2DEG in the
presence of strong magnetic fields and intense laser fields in the Faraday geometry. We consider
the situation where: (i) a 2DEG is formed along the xy-plane and the growth direction of the
2DEG is along the z-axis; (ii) a magnetic field B is applied perpendicular to the 2D plane of the
2DEG (e.g., applied along the z-axis); and (iii) a laser field Ax(t) is applied along the z-axis
and is polarized linearly along the x-direction. In this configuration (known as the Faraday
geometry), the magnetic and laser fields do not couple to the confinement potential of the
2DEG and the magnetic field couples directly to the linearly polarized laser field. As a result,
the CR effect can be immediately expected. In this case, there is no gauge in which the electron
Hamiltonian is translationally invariant [6] and the most convenient gauge for describing the
two uniform fields is

φ(R, t) = 0 and A(R, t) = (Ax(t),−Bx, 0) (1)

where R = (r, z) = (x, y, z). Here, we have used the Landau gauge and the Coulomb gauge
for the vector and scalar potentials induced respectively by the static magnetic field and by the
3 f = 1 THz in frequency is 299.79 µm in wavelength, 4.14 meV in energy, and 47.99 K in temperature. For GaAs,
1 THz is 2.38 T in magnetic field.
4 For the recent development of the FELs, see, e.g., [2].
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EM radiation field. It should be noted that the usage of the Coulomb gauge for the radiation
field can also satisfy the conditions for free electrons, such as the charge density and the current
density being zero when scattering, inhomogeneities, external driving fields, etc, are absent [7].

After using the dipole approximation for the EM field, we can write Ax(t) = A0 sin(ωt),
where ω is the frequency of the radiation and A0 = F0/ω, with F0 being the electric field
strength of the EM field. Thus, the electron Hamiltonian for a 2DEG can be written as

H(t) = Hxy(t) + Hz (2.1)

where

Hxy(t) = 1

2m∗ [(px − eAx(t))
2 + (py + eBx)2] (2.2)

and

Hz = p2
z

2m∗ + U(z). (2.3)

Here, m∗ is the effective electron mass, px = −ih̄ ∂/∂x is the momentum operator along
the x-direction, and U(z) is the confinement potential energy of the 2DEG along the growth
direction. The time-dependent Schrödinger equation

ih̄ ∂�(R, t)/∂t = H(t)�(R, t) (3)

can be solved analytically and the time-dependent electron wavefunction is obtained as (see
appendixes A and B)

�N,ky,n(R, t) = �N,ky,n(r, t)ψn(z) (4.1)

where

�N,ky,n(r, t) = eikyye−iEemτ0(t)/h̄e−i(EN +εn+Eem)t/h̄χN(x − X)eix0(x−X)/l2 . (4.2)

Here, ky is the electron wavevector along the y-direction, X = X(t) = −l2ky + x1(t) with
l = (h̄/eB)1/2 being the radius of the ground cyclotron orbit, and EN = (N + 1/2)h̄ωc is
the N th LL energy with N = 0, 1, 2, . . . and ωc = eB/m∗ being the cyclotron frequency. In
equation (4.2)

x0 = x0(t) = − eF0

m∗ω
ωc sin(ωt) − ω sin(ωct)

ω2 − ω2
c

x1 = x1(t) = eF0

m∗
cos(ωt) − cos(ωct)

ω2 − ω2
c

τ0(t) = ω2
c/ω

ω2 − ω2
c

[
3ω2

c − ω2

2ω2
c

sin(2ωt) +
ω

ωc

sin(2ωct) − 4 sin(ωt) cos(ωct)

]
.

Also,

Eem = (eF0)
2

4m∗(ω2 − ω2
c )

is an energy induced by the radiation and magnetic fields, and

χN(x) = (2NN !π1/2l)−1/2e−(x/ l)2/2HN(x/l)

with HN(x) being the Hermite polynomials. Furthermore, because the applied magnetic
and laser fields do not couple with the confining potential of the 2DEG, the electron
wavefunction along the growth direction, ψn(z), and the energy of the nth electronic subband,
εn, are determined by the time-independent Schrödinger equation along the z-direction:
[Hz − εn]ψn(z) = 0.
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2.2. The Green function for electrons

With the time-dependent electron wavefunction, we can derive the retarded propagator or Green
function for electrons in different representations. In this paper, we generalize a common
approach used in time-dependent condensed matter theory [8] to derive the Green function.
Because the Hamiltonian Hxy(t) can only be solved in real space, we can first write the electron
Green function for the nth subband in the (r, t) or (space, time) representation as

Gn(r, t; r′, t ′) = − i

h̄
'(t − t ′)

∑
N,ky

�∗
N,ky ,n

(r′, t ′)�N,ky,n(r, t) (5)

which satisfies[
ih̄

∂

∂t
− Hxy(t) + εn

]
Gn(r, t; r′, t ′) = δ(t − t ′)δ(r − r′). (6)

After summing over ky , we have

Gn(r, t; r′, t ′) = − i

h̄

'(t − t ′)
2πl2

∑
N

e−Y/2LN(Y )e−i(EN +εn+Eem)(t−t ′)

× e−iEem[τ0(t)−τ0(t
′)]/h̄ei[x0(t)+x0(t

′)][x−x ′−x1(t)+x1(t
′)]/2l2

× e−i[x+x ′−x1(t)−x1(t
′)](y−y ′)/2l2 (7)

with Y = [(x − x ′ − x1(t) + x1(t
′))2 + (y − y ′ + x0(t) − x0(t

′))2]/2l2 and LN(x) = L0
N(x)

being the Laguerre polynomials.
From equation (7), we see that due to the coupling between the magnetic field and the

EM field, the Green function depends not only on r − r ′ but also on r + r ′. Thus, the Green
function in (k, t) or (momentum, time) representation should be derived from space Fourier
transform of Gn(r, t; r′, t ′) in relation to relative coordinates r − r ′ and to space centre-of-
mass coordinates (r + r ′)/2. On doing this, the Green function for the nth subband in the (k, t)
representation is obtained as

Gn(k; t, t ′) = − i

h̄
'(t − t ′)2e−i[x0(t)+x0(t

′)][x1(t)−x1(t
′)]/2l2 ei[(x1(t)−x1(t

′))k∗
x−(x0(t)−x0(t

′))k∗
y ]

× e−iEem[τ0(t)−τ0(t
′)]/h̄

∑
N

(−1)Ne−i(EN +εn+Eem)(t−t ′)/h̄

× e−l2(k∗
x

2+k∗
y

2)LN [2l2(k∗
x

2 + k∗
y

2
)] (8)

where k∗
x = kx + [x0(t) + x0(t

′)]/2l2 and k∗
y = ky + [x1(t) + x1(t

′)]/2l2.
After averaging Gn(k; t, t ′) over k, we obtain the Green function for the nth subband in

the time representation:

Gn(t, t
′) = Gn(τ, T ) = − i

h̄

'(τ)

2πl2

∑
N

e−i(EN +εn+Eem)τ/h̄e−iAe−B/2LN(B) (9)

where τ = t − t ′ is the time ‘relative coordinates’, T = (t + t ′)/2 is the time ‘centre-of-mass
coordinates’,

A = Eem

h̄ω

[
2ω2

c

ω2 − ω2
c

− cos(2ωT )

]

and

B = 4Eemωc

h̄ω2

[
ω2 + ω2

c

ω2 − ω2
c

− cos(2ωT )

]
sin2

(ωτ

2

)
.
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From a theoretical perspective, when a time-dependent potential such as an EM potential is
present, the electronic quantities in general are two-time ones. In this case, the response of an
electron to the time-dependent driving field depends not only on the time difference t − t ′ but
also on the time shift (e.g., t + t ′) induced by the applied external field. This feature has been
reflected in the electron Green function in the time representation.

To investigate the steady-state property of a two-time quantity F(t, t ′) in the presence of a
time-dependent periodic field, the most convenient and popularly used theoretical approach [9]
is first Fourier analysing F(t, t ′) = F(τ, T ) along the τ -direction to get F(-, T ), then
averaging T in F(-, T ) over a period of the driving field to get F(-) in the spectrum
representation. The Fourier transform (or average over time τ ) of Gn(τ, T ) is given by

Gn(E, T ) = 1

2πl2

∑
N

∞∑
m=−∞

FNm(cos(2ωT ))

E − EN − εn − Eem − mh̄ω + iδ
(10)

where an infinitesimal quantity iδ has been introduced to make the integral converge, E is the
electron energy, and (see appendix C)

FNm(y) = (−1)m

π

∫ π

0
dx cos(mx + C sin x)e−D(1+cos x)/4LN

(D
2
(1 + cos x)

)
with

C = Eem

h̄ω

[
2ω2

c

ω2 − ω2
c

− y

]
and D = 4Eemωc

h̄ω2

[
ω2 + ω2

c

ω2 − ω2
c

− y

]
.

In equation (10), m is induced by the Fourier transform and corresponds to emission and
absorption of photons with energymh̄ω. Therefore, m is an index for different optical channels,
i.e., m > 0 (m < 0) for m-photon absorption (emission) and m = 0 for elastic optical process.
By averaging T in equation (10) over a period of the radiation field, the Green function for the
nth subband in spectrum representation is obtained as

Gn(E) = 1

2πl2

∑
N

∞∑
m=−∞

FNm

E − EN − εn − Eem − mh̄ω + iδ
(11)

whereFNm = (1/2π)
∫ 2π

0 dx FNm(cos(2x)) and the degeneracy of each LL is given by 1/2πl2.

2.3. Density of states

The steady-state electron DoS is defined from the imaginary part of the retarded Green function
in the spectrum representation. The total DoS of a 2DEG is given by

D(E) = −gs

π

∑
n

Im Gn(E) = gs

2πl2

∑
N,n

∞∑
m=−∞

FNmδ(E − EN − εn − Eem − mh̄ω) (12)

where gs = 2 accounts for the spin degeneracy.

3. Results and discussion

3.1. Analytical results

From equation (12), we see that, similarly to the case where the radiation field is not applied,
the presence of a quantizing magnetic field leads to a singular nature of the DoS of a 2DEG in
the absence of scattering. This singular nature is characterized by a series of δ-function peaks
centred at E = EN + εn + Eem + mh̄ω. In the presence of scattering, inhomogeneities, etc, the
LLs are broadened and the singularities of the DoS are damped. To our knowledge, at present
little is known about the shift and broadening of the LLs induced by electronic scattering
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mechanisms in the presence of intense radiation fields. In this paper, we limit ourselves to the
case of the electron DoS caused by direct coupling between magnetic field and laser radiation
and we neglect the details of the LL structure induced by electronic scattering channels. It has
been demonstrated that in the absence of the radiation field, the DoS of the LLs for a 2DEG is
basically semielliptic [10]. For a semielliptic type of DoS, equation (12) becomes

D(E) = 2

π2l2

∑
N,n

1

3Nn

∞∑
m=−∞

FNm Re

[
1 −

(
E − EN − εn − Eem − mh̄ω

3Nn

)2
]1/2

(13)

with 3Nn being the width of the N th LL in the nth subband.
In the non-perturbative approach developed in this paper to obtain the Green function for

electrons and the electron DoS, the effects of the magnetic and radiation fields are included
exactly. In an electronic system, when the magnetic field couples to the radiation field, the
CR effect should be present. This can be seen in the time-dependent electron wavefunction
(equation (4)), the Green function for the electrons (equations (7)–(11)), and in the electron
DoS (equations (12) and (13)). In the presence of an intense radiation field, electrons in the
system can interact with the radiation field via absorption and emission of photons, including
multi-photon processes. This has been reflected in the Green function (equation (11)) and in
the electron DoS (equation (13)), where a factor FNm plays a role in switching different optical
channels for different LLs.

It is well known that when an electron gas is subjected to a strong dc field, the electron
DoS will be blue-shifted by the energy of the electric field. As a consequence, the fundamental
absorption edge will also be blue-shifted. This is known as the Franz–Keldysh effect
(FKE) [11]. A similar phenomena occurs when an intense laser field is applied to an electron gas
system, where the electron DoS and the fundamental absorption edge are blue-shifted [12,13]5

by an energyEem|B=0 = (eF0)
2/(4m∗ω2) in the absence of a magnetic field. This is electrically

analogous to the FKE and the effect has been named the DFKE [9]. Very recently, the blue-
shift of the fundamental absorption edge by Eem|B=0 in GaAs-based 2DEG systems has been
successfully observed experimentally using THz FELs as intense laser radiation sources [14].
In the presence of a magnetic field and a linearly polarized laser field in the Faraday geometry,
the coupling of the magnetic and radiation fields to the 2DEG system results in the energy of
the system being shifted by the energy Eem + mh̄ω. This implies that for a 2DEG subjected to
a strong magnetic field and an intense laser field, the electron DoS will be split into a series of
peaks according to different optical processes and will be shifted by the energy Eem + mh̄ω.
As a result, we expect the fundamental absorption edge to also be shifted by Eem +mh̄ω. Thus,
for the present situation, the FKE should be observed through the shift of the fundamental
absorption edge by an energy (eF0)

2/[4m∗(ω2 − ω2
c )] + mh̄ω. Since this effect occurs in

the presence of coupled magnetic and laser fields and is fundamentally different from those
observed in the absence of the magnetic field, we name it here the magneto-optical Franz–
Keldysh effect (MOFKE).

In contrast to the DFKE observed in the absence of a magnetic field, where only a blue-
shift can be observed for elastic optical processes (i.e., for m = 0 where the maximum electron
DoS can be observed), the presence of the magnetic field will lead to the phenomenon that
both blue-shifts (ω > ωc) and red-shifts (ω < ωc) can be measured for m = 0 in the MOFKE.
When the condition of the CR is satisfied, i.e., ω ∼ ωc, the electronic transitions are mainly
achieved via inter-LL transition events and the shift of the MOFKE cannot be measured. The
CR effect can be seen from the energy shift Eem induced by the radiation and magnetic fields
and from the factor FNm for different LLs and different optical processes.

5 For case of a 3DEG, see [12]; for case of a 2DEG, see [13].
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Moreover, as demonstrated in, e.g., [9], the time-dependent Green function obtained for an
electron gas in intense laser fields can be used to derive, e.g., the dielectric response function.
The Green function given by equation (5) can also be applied to derive the electron density–
density correlation function and the RPA dielectric function for a 2DEG subjected to high
magnetic fields and intense laser fields6. In this paper, we limit ourselves to the discussion of
the electron DoS resulting from equation (5).

3.2. Numerical results

In this paper, the numerical calculations are carried out for GaAs-based 2DEG systems. The
effective electron mass for GaAs is m∗ = 0.0665me with me being the rest electron mass. We
consider a situation where one electronic subband is present in a 2DEG and we use results
obtained from the self-consistent Born approximation for the LL width. Under the short-range
scattering approximation, we have [15]

3Nn = 3 =
(

2eh̄2ωc

πµ0m∗

)1/2

(14)

with µ0 being the low-temperature electron mobility at B = 0. In the calculations, we take
a typical value of µ0 = 10 m2 V−1 s−1 to estimate the LL width and take a typical value of
the electron density ne = 8 × 1014 m−2 to calculate the Fermi energy. Moreover, the optical
channels for m = 0,±1,±2, . . . ,±30 are included in the calculations.

The electron DoS for the lowest LL, N = 0, D0(E), at a fixed magnetic field B = 5 T
and a fixed radiation intensity7 F0 = 5 kV cm−1 are shown in figures 1 and 2 for different
radiation frequencies: ω < ωc in figure 1 and ω > ωc in figure 2. F0 = 0 (dotted curves in
figures 1 and 2) corresponds to the case where the radiation field is absent. From figures 1
and 2, we see that in the presence of a linearly polarized intense laser field and a quantizing
magnetic field in the Faraday geometry:

(i) the DoS of a LL for a 2DEG is split into a series of peaks centred at E = EN +Eem +mh̄ω;
(ii) the shift of the DoS from that at F0 = 0 depends not only on the energy induced by

coupled radiation and magnetic fields (Eem) but also on the event: absorption or emission
of photons (mh̄ω);

(iii) when a channel for elastic optical scattering (i.e., m = 0) opens up, the red-shifts and
blue-shifts of the DoS caused by this optical process can be observed respectively at
ω < ωc (figure 1) and at ω > ωc (figure 2);

(iv) the electron DoS can be present in the lower- and even the negative-energy regime, due
to the energy shift induced by Eem and to the presence of channels for optical emission;
and

(v) absorption (m > 0) and elastic (m = 0) optical scattering processes give the major
contributions to the electron DoS, whereas a relatively weak effect can be observed for
those caused by photon emission events.

These results indicate that when an intense laser field is applied to a 2DEG, the electron DoS
differs significantly from that at F0 = 0.

Experimentally, at low temperatures and in the absence of the laser radiation, the DoS of
the 2DEGs has been successfully determined by measuring, e.g., equilibrium quantities such
as magnetization [16], capacitance [17], specific heat [16], and magnetic susceptibility [18].

6 The results will be presented elsewhere.
7 The connection between the electric field strength of a laser field (F0) and the laser output power (I ) is:
I = 0.5

√
ε/µ|F0|2 � 1.32|F0|2 kW cm−2 where F0 is in units of kV cm−1.
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Figure 1. The electron DoS for the lowest LL N = 0 at a
fixed magnetic field and a fixed radiation field where ω <

ωc . The electron energy is measured from E = E + ε0,
m > 0 (m < 0) corresponds to a channel for m-photon
absorption (emission), Ec = h̄ωc , and D0 = m∗/πh̄2.
F0 = 0 (dotted curve) is the DoS in the absence of a
radiation field.

Figure 2. The electron DoS for the 0th LL at a fixed
magnetic field and a fixed radiation field where ω > ωc .
The other parameters are the same as for figure 1.

Some of these experiments can also be used to determine the DoS of the 2DEG in the presence
of quantizing magnetic fields and intense laser fields in the Faraday geometry. From the
theoretical results shown above, we see that for GaAs-based 2DEG systems at a magnetic
field of about B ∼ 1 T, the strong modification and perturbation to the electron DoS by the
radiation field can be observed when the radiation intensity F0 ∼ 10 kV cm−1 (or output power
P ∼ 100 kW cm−2) and radiation frequency f ∼ 1 THz.

An important and direct application of the electron DoS is in determining the Fermi
energy of an electronic system. We can estimate the Fermi energy EF by assuming that the
total electron density ne in a 2DEG system is not varied by the presence of the radiation and
magnetic fields, and by introducing the electron DoS into the condition of electron number
conservation:

ne =
∫ ∞

−∞
f (E)D(E) dE (15)

where f (E) is the Fermi–Dirac function. The zero-temperature Fermi energy, measured from
the energy Eem, is plotted in figure 3 as a function of magnetic field at a fixed radiation
frequency for different radiation intensities. It should be noted that in the Faraday geometry,
the CR effect can be seen in the Fermi energy. With increasing radiation intensity, a stronger
CR effect is observed in the Fermi level. When ωc > ω (ωc < ω) the Fermi energy increases
(decreases) with increasing F0. Since Eem diverges when ωc ∼ ω, the results shown in figure 3
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Figure 3. Zero-temperature Fermi energy, measured from
the energy Eem, versus magnetic field at a fixed radiation
frequency for different radiation intensities. ne is the
electron density of the 2DEG. Note that the CR effect
occurs at ωc � ω.

imply that when the condition for the CR is satisfied, the Fermi energy of the system becomes
infinity from a theoretical point of view. We note that in the model, we only consider an ideal
situation with features such as a ‘pure’ radiation frequency and a ‘strict’ linear polarization of
the radiation field. For real radiation sources, e.g., FELs, the radiation frequency can be slightly
broadened and the linear polarization of the radiation can be slightly bent. These effects can
damp the singular natures of the Fermi energy and other electronic properties when ωc ∼ ω.

4. Conclusions

When we consider a semiconductor-based 2DEG subjected simultaneously to quantizing
magnetic fields and to intense THz laser fields, we enter a regime with different competing
energies, such as the Fermi, cyclotron, and photon energies. These energies (frequencies) are
of the order of meV (THz). This implies that the intense THz radiation can couple strongly to
the electronic systems and, as a consequence, we can observe and study THz-photon-induced
novel magneto-optical effects. In this paper, we have examined a rather simple and important
phenomenon which may be observable using the state-of-the-art laser and high-magnetic-field
technologies.

We have demonstrated that when a 2DEG is subjected to intense laser fields and to strong
magnetic fields in the Faraday geometry, the DoS of a LL and, as a result, the fundamental
absorption edge are split and shifted by an energy Eem = (eF0)

2/[4m∗(ω2 − ω2
c )] induced

by the radiation and magnetic fields and by the energy transfer mh̄ω due to different optical
processes. In contrast to the DFKE observed for a 2DEG at B = 0, where only a blue-shift
can be seen, we predict that in the presence of the strong magnetic fields, both red-shifts and
blue-shifts of the MOFKE can be measured. For a semiconductor-based 2DEG system, the
MOFKE can be observed when B ∼ 1 T, F0 ∼ 10 kV cm−1, and ω ∼ 1 THz. The radiation
condition has been realized by the current generation of the THz FELs. Because the DFKE
has been observed experimentally for GaAs-based 2DEGs [14], we hope that the phenomena
discussed and predicted in this paper will also be verified experimentally.
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Appendix A

It can be proven that when a static magnetic field is applied along the z-direction and is
included within the Laudau gauge, at an arbitrary gauge for describing a radiation field which
is polarized linearly along the x-direction, the time-dependent Schrödinger equation can be
transformed into a wave equation:

ih̄
∂�(x, t)

∂t
=

[
− h̄2

2m∗
∂2

∂x2
+

m∗

2
ω2

c [x + f (t)]2

]
�(x, t) (A.1)

where f (t) can be a time-dependent arbitrary function. Using the canonical transformation
proposed by Husimi [19], the solution of equation (A.1) is given by

�(x, t) = χN(x − x0) exp

[
− i

h̄

(
ENt − m∗

[
(x − x0)

dx0

dt
+ R(t)

])]
. (A.2)

Here, N = 0, 1, 2, . . . , EN = (N + 1/2)h̄ωc,

x0 = x0(t) = C cos(ωct) + D sin(ωct)

− ωc

[
sin(ωct)

∫ t

dτ f (τ) cos(ωcτ ) − cos(ωct)

∫ t

dτ f (τ) sin(ωcτ )

]
(A.3)

where C and D are integral constants,

χN(x) = (2NN !π1/2l)−1/2e−(x/ l)2/2HN(x/l) (A.4)

and

R(t) = 1

2

∫ t

dτ

[(
dx0(τ )

dτ

)2

− ω2
c [f (τ) + x0(τ )]

2

]
. (A.5)

Appendix B

The time-dependent component of the Schrödinger equation, equation (3), along the xy-plane
is

ih̄
∂�(x, t)

∂t
= Hxy(t)�(x, t) =

[
− h̄2

2m∗

(
∂

∂x
− i

eAx(t)

h̄

)2

+
m∗

2
ω2

c (x + l2ky)
2

]
�(x, t).

(B.1)

Setting x = x ′ + α and α = α(t) = −(e/m∗)
∫ t dτ Ax(τ ), equation (B.1) becomes

ih̄
∂�(x ′, t)

∂t
=

[
− h̄2

2m∗
∂2

∂x ′2 +
m∗

2
ω2

c [x ′ + l2ky + α]2 +
[eAx(t)]2

2m∗

]
�(x ′, t). (B.2)

Assuming �(x ′, t) = φ(x ′, t) exp[−(i/h̄)
∫ t dτ (eAx(τ ))

2/2m∗], equation (B.2) reads

ih̄
∂φ(x ′, t)

∂t
=

[
− h̄2

2m∗
∂2

∂x ′2 +
m∗

2
ω2

c [x ′ + f (t)]2

]
φ(x ′, t) (B.3)

where f (t) = α(t) + l2ky . The solution of equation (B.3) is presented in appendix A. Thus,
the solution of equation (B.1) is given by

�(x, t) = χN(x − x0 − α)e−iEN t/h̄eim∗[(x−x0−α)(dx0/dt)+R1(t)]/h̄ (B.4)
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where x0 = x0(t) is given by equation (A.3) and

R1(t) = 1

2

∫ t

dτ

[(
dx0(τ )

dτ

)2

− ω2
c [f (τ) + x0(τ )]

2 −
(
eAx(τ )

m∗

)2
]
. (B.5)

After: (i) introducing the initial condition x − x0(t) − α(t) = x + l2ky at t = 0 and (ii) using
a condition that when the radiation field is absent (i.e., F0 = 0): x − x0(t) − α(t) = x + l2ky ,
we can determine the integral constants C and D in equation (A.3) and, thus, the solution of
equation (3) can be obtained as equation (4).

Appendix C

For the LLs N = 0, 1, 2, 3, and 4, the factor FNm(x) takes the forms

F0m(x) = Rm(x) (C.1)

F1m(x) = (1 − 2c)Rm(x) + c[Rm+1(x) + Rm−1(x)] (C.2)

F2m(x) = (1 − 4c + 3c2)Rm(x) + 2c(1 − c)[Rm+1(x) + Rm−1(x)]

+
c2

2
[Rm+2(x) + Rm−2(x)] (C.3)

F3m(x) = (1 − 6c + 9c2 − 10c3/3)Rm(x) +
c

2
(6 − 12c + 5c2)[Rm+1(x) + Rm−1(x)]

+
c2

2
(3 − 2c)[Rm+2(x) + Rm−2(x)] +

c3

6
[Rm+3(x) + Rm−3(x)] (C.4)

and

F4m(x) = (1 − 8c + 18c2 − 40c3/3 + 35c4/12)Rm(x)

+ c(4 − 12c + 10c2 − 7c3/3)[Rm+1(x) + Rm−1(x)]

+
c2

2
(6 − 8c + 7c2/3)[Rm+2(x) + Rm−2(x)] +

c3

2
(2 − c)[Rm+3(x) + Rm−3(x)]

+
c4

24
[Rm+4(x) + Rm−4(x)]. (C.5)

Here,

c = Eem

h̄ω
ω∗

c

[
1 + ω∗

c

1 − ω∗
c

− x

]
(C.6)

where ω∗
c = ωc/ω, x± = ω∗

c ± (1 ± ω∗
c )x, and

Rm(x) =
(

1 + ω∗
c

|1 − ω∗
c |

)m (
x−
x+

)m/2

e−cIm

( |Eem|
h̄ω

√
x+x−

)
(C.7)

with Im(x) being the modified Bessel function.
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